Cart (Loading....) | Create Account
Close category search window
 

Lightning Indirect Effects Certification of a Transport Aircraft by Numerical Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Apra, M. ; Alenia Aeronaut. S.P.A., Turino ; D'Amore, M. ; Gigliotti, K. ; Sarto, M.S.
more authors

The interaction of lightning with an aircraft induces voltages and currents in the onboard wire harnesses, which can cause critical electronic equipment damage or malfunction, thus compromising the flight safety. The lightning interaction with an aircraft made largely of composite materials, like Boeing 787 and Airbus 380, is a subject of strong interest to the aeronautical industry. The computational tool "Virtual Aircraft Electromagnetic Lightning Indirect Effect Evaluation" (VAM-LIFE) was developed for the complete analysis of the electromagnetic fields inside and outside a medium-sized aircraft struck by lightning, and for the evaluation of the indirect lightning effects induced in the aircraft wiring system. The tool VAM-LIFE was used to obtain the certification by the Italian Aeronautic Authority of the C-27J aircraft of Alenia Aeronautica for indirect effects of lightning. This paper reviews the main features of the tool and presents new computational results of specific interest for the certification process of the C-27J aircraft. Moreover, this paper discusses the relevant aspects related to the modeling and simulation of innovative advanced composite materials with improved protection performance against a lightening electromagnetic pulse stroke.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:50 ,  Issue: 3 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.