By Topic

Congestion-Constrained Layer Assignment for Via Minimization in Global Routing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsung-Hsien Lee ; Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu ; Ting-Chi Wang

In this paper, we study the problem of layer assignment for via minimization, which arises during multilayer global routing. In addressing this problem, we take the total overflow and the maximum overflow as the congestion constraints from a given one-layer global routing solution and aim to find a layer assignment result for each net such that the via cost is minimized while the given congestion constraints are satisfied. To solve the problem, we propose a polynomial-time algorithm which first generates a net order and then performs layer assignment one net at a time according to the order using dynamic programming. Our algorithm is guaranteed to generate a layer assignment solution satisfying the given congestion constraints. We used the six-layer benchmarks released from the ISPD'07 global routing contest to test our algorithm. The experimental results show that our algorithm was able to improve the contest results of the top three winners MaizeRouter, BoxRouter, and FGR on each benchmark. As compared to BoxRouter 2.0 and FGR 1.1, which are newer versions of BoxRouter and FGR, our algorithm respectively produced smaller via costs on all benchmarks and half the benchmarks. Our algorithm can also be adapted to refine a given multilayer global routing solution in a net-by-net manner, and the experimental results show that this refinement approach improved the via costs on all benchmarks for FGR 1.1.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 9 )