By Topic

A Nonscan Design-for-Testability Method for Register-Transfer-Level Circuits to Guarantee Linear-Depth Time Expansion Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fujiwara, H. ; Kansai Sci. City, Nara Inst. of Sci. & Technol., Nara ; Iwata, H. ; Yoneda, T. ; Chia Yee Ooi

This paper presents a nonscan design-for-testability (DFT) method for register-transfer-level (RTL) circuits. We first introduce the notation to analyze the test generation complexity, as well as two classes of sequential circuits, namely: 1) the combinationally testable class and 2) the acyclically testable class. Then, we introduce a new class of linear-depth time-bounded circuits as one of the acyclically testable classes. The linear-depth time-bounded testability guarantees that the number of time frames required for any testable fault is bounded by a linear function of the number of flip-flops in the circuit during the test generation process. As one of the linear-depth time-bounded classes, we introduce a new class of RTL circuits, called the cycle-unrollable RTL circuits, which is shown to be linear depth time bounded. We propose a DFT method to make RTL circuits cycle unrollable and a test generation method for cycle-unrollable RTL circuits. Experimental results show that we can drastically reduce hardware overhead and test application time compared to the full-scan method and the method proposed by Ohtake Moreover, our proposed method can achieve 100% fault efficiency for gate-level single stuck-at faults in practical test generation time and allow at-speed testing.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:27 ,  Issue: 9 )