We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Adaptive Sliding-Mode-Observer-Based Fault Reconstruction for Nonlinear Systems With Parametric Uncertainties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xing-Gang Yan ; Control Syst. Res. Group, Leicester Univ., Leicester ; Edwards, C.

In this paper, a class of nonlinear systems with uncertain parameters is considered. A novel adaptive law is designed to identify unknown parameters under the assumption that the time derivative of some of the outputs is measurable. Then, a sliding-mode observer is proposed to estimate the system state variables. By using the inherent features of sliding-mode observers, a fault-reconstruction scheme is proposed which can be implemented online. The proposed reconstruction signal can approximate the fault signal to any required accuracy even in the presence of uncertain parameters. A simulation example for a magnetic-levitation system is given to illustrate the feasibility and effectiveness of the proposed scheme.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 11 )