By Topic

Computing Gradient Vector and Jacobian Matrix in Arbitrarily Connected Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wilamowski, B.M. ; Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL ; Cotton, N.J. ; Kaynak, O. ; Dundar, G.

This paper describes a new algorithm with neuron-by-neuron computation methods for the gradient vector and the Jacobian matrix. The algorithm can handle networks with arbitrarily connected neurons. The training speed is comparable with the Levenberg-Marquardt algorithm, which is currently considered by many as the fastest algorithm for neural network training. More importantly, it is shown that the computation of the Jacobian, which is required for second-order algorithms, has a similar computation complexity as the computation of the gradient for first-order learning methods. This new algorithm is implemented in the newly developed software, Neural Network Trainer, which has unique capabilities of handling arbitrarily connected networks. These networks with connections across layers can be more efficient than commonly used multilayer perceptron networks.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 10 )