By Topic

A New Bearing Fault Detection Method in Induction Machines Based on Instantaneous Power Factor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ibrahim, A. ; Lab. d''Analyse des Signaux et des Processus Industriels, Univ. Jean Monnet de St.-Etienne, Roanne ; El Badaoui, M. ; Guillet, F. ; Bonnardot, F.

Fault detection and diagnosis of asynchronous machine has become a central problem in industry over the past decade. A solution to tackle this problem is to use stator current for a condition monitoring, referred to as motor current signature analysis. This paper argues that bearing faults would have a negligible effect on motor currents and instead argues that the more likely reason why the faults can be detected in currents is because they entail a fluctuating resistive torque which acts immediately, in contrast to the radial displacement which takes time to integrate to a perceptible displacement even in response to a step change in velocity. In this context, we propose a new method for detecting bearing defects based on the exploitation of the instantaneous power factor that varies according to torque oscillations. Experimental results show the good performances of the proposed method which will be compared with the instantaneous power method to highlight the feasibility and advantages of this method.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 12 )