By Topic

Efficient Design of High-Complexity Cosine Modulated Filter Banks Using 2 M th Band Conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zi-Jing Zhang ; Nat. Lab. of Radar Signal Process., Xidian Univ., Xi''an ; Peng-Lang Shui ; Tao Su

This paper presents several new properties of biorthogonal cosine modulated filter banks (CMFBs) and efficient algorithms for designing CMFBs with a very large number of subbands and very long filters. For a biorthogonal CMFB, we find the periodicity and symmetry of its overall transfer function and aliasing transfer functions which can be efficiently computed based on a decimated uniform discrete Fourier transform (DFT) analysis filter bank. By exploiting gradient information and 2M th band conditions, efficient algorithms are proposed for designing both orthogonal and biorthogonal CMFBs. In addition, an efficient matrix inversion algorithm with O(N 2 ) complexity is also presented. Several numerical examples and comparisons with many other existing methods are included to demonstrate the design performance and efficiency of the algorithms.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 11 )