By Topic

Reducing leakage power in peripheral circuits of L2 caches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Houman Homayoun ; Dept. of Computer Science, UC Irvine, USA ; Alex Veidenbaum

Leakage power has grown significantly and is a major challenge in microprocessor design. Leakage is the dominant power component in second-level (L2) caches. This paper presents two architectural techniques to utilize leakage reduction circuits in L2 caches. They primarily target the leakage in the peripheral circuitry of an L2 cache and as such have to be able to cope with longer delays. One technique exploits the fact that processor activity decreases significantly after an L2 cache miss occurs and saves power during L2 miss service time. Two algorithms, a static one and an adaptive one, are proposed for deciding when to apply this leakage reduction technique. Another technique attempts to keep the peripheral circuits in a lower-power state most of the time. The results for SPEC2K benchmarks show that the first technique can achieve a 18 to 22% reduction in L2 power consumption, on average (and up to 63%), depending on the decision algorithm. The second technique can save 25%, on average (and up to 80%). This comes with a negligible 1 to 2% performance impact, on average, depending on the technique used.

Published in:

Computer Design, 2007. ICCD 2007. 25th International Conference on

Date of Conference:

7-10 Oct. 2007