By Topic

Sequential diagnosis for rolling bearing using fuzzy neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huaqing Wang ; Sch. of Mech. & Electr. Eng., Beijing Univ. of Chem. Technol., Beijing ; Peng Chen

In the case of fault diagnosis of the plant machinery, knowledge for distinguishing faults is ambiguous because definite relationships between symptoms and fault types cannot be easily identified. So this paper presents a sequential diagnosis method for rolling bearing by a fuzzy neural network with the features of a vibration signal in time domain. The fuzzy neural network is realized with a developed back propagation neural network, by which the fault types of a bearing can be automatically distinguished on the basis of the possibility distributions of symptom parameters sequentially. The non-dimensional symptom parameters which reflect the features of signal measured for the diagnosis are also described in time domain. The faults that often occur in a bearing, such as the outer race flaw, inner race flaw, and roller element flaw, are used for the diagnosis. Practical examples of diagnosis for a rolling bearing used in rotating machinery are shown to verify the efficiency of the method.

Published in:

Advanced Intelligent Mechatronics, 2008. AIM 2008. IEEE/ASME International Conference on

Date of Conference:

2-5 July 2008