Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Using Machine Learning to Refine Black-Box Test Specifications and Test Suites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Briand, L.C. ; Simula Res. Lab., Univ. of Oslo, Lysaker ; Labiche, Y. ; Bawar, Z.

In the context of open source development or software evolution, developers often face test suites which have been developed with no apparent rationale and which may need to be augmented or refined to ensure sufficient dependability, or even reduced to meet tight deadlines. We refer to this process as the re-engineering of test suites. It is important to provide both methodological and tool support to help people understand the limitations of test suites and their possible redundancies, so as to be able to refine them in a cost effective manner. To address this problem in the case of black-box testing, we propose a methodology based on machine learning that has shown promising results on a case study.

Published in:

Quality Software, 2008. QSIC '08. The Eighth International Conference on

Date of Conference:

12-13 Aug. 2008