By Topic

Dynamic Memory Access Management for High-Performance DSP Applications Using High-Level Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Le Gal, B. ; IMS Lab., Bordeaux 1 Univ., Talence ; Casseau, E. ; Huet, S.

Multimedia applications such as video and image processing are often characterized by a huge number of data accesses. In many digital signal processing applications, array access patterns are regular and periodic. In these cases, optimized architectures using pipelined memory access controllers can be generated. In this paper, we focus on implementing memory interfacing modules that can be automatically generated from a high-level synthesis tool and which can efficiently handle predictable address patterns as well as random ones (i.e., dynamic address computations). The benefits of balancing dynamic address computations from datapath to dedicated computation units in the memory controller is also analyzed as well as operator bitwidth optimization and data locality to save power consumption and reduce latency.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:16 ,  Issue: 11 )