By Topic

Three-Dimensional Cardiac Strain Estimation Using Spatio–Temporal Elastic Registration of Ultrasound Images: A Feasibility Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
An Elen ; Dept. of Electr. Eng., Katholieke Univ. Leuven, Leuven ; Hon Fai Choi ; Dirk Loeckx ; Hang Gao
more authors

Current ultrasound methods for measuring myocardial strain are often limited to measurements in one or two dimensions. Cardiac motion and deformation however are truly 3-D. With the introduction of matrix transducer technology, 3-D ultrasound imaging of the heart has become feasible but suffers from low temporal and spatial resolution, making 3-D strain estimation challenging. In this paper, it is shown that automatic intensity-based spatio-temporal elastic registration of currently available 3-D volumetric ultrasound data sets can be used to measure the full 3-D strain tensor. The method was validated using simulated 3-D ultrasound data sets of the left ventricle (LV). Three types of data sets were simulated: a normal and symmetric LV with different heart rates, a more realistic asymmetric normal LV and an infarcted LV. The absolute error in the estimated displacement was between 0.47 plusmn0.23 and 1.00 plusmn0.59 mm, depending on heart rate and amount of background noise. The absolute error on the estimated strain was 9%-21% for the radial strain and 1%-4% for the longitudinal and circumferential strains. No large differences were found between the different types of data sets. The shape of the strain curves was estimated properly and the position of the infarcts could be identified correctly. Preliminary results on clinical data taken in vivo from three healthy volunteers and one patient with an apical aneurism confirmed these findings in a qualitative manner as the strain curves obtained with the proposed method have an amplitude and shape similar to what could be expected.

Published in:

IEEE Transactions on Medical Imaging  (Volume:27 ,  Issue: 11 )