By Topic

Osteoblast-like cells response to layer by layer self assembled biomimetic coatings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Soumetz, F.C. ; Dept. of Commun., Univ. of Genova, Genoa ; Pastorino, L. ; Ruggiero, C.

Nanometer-sized structures have been found to interact with cell function and development. In tissue engineering, the fabrication of bioactive devices which mimic physiologic conditions has a key role in eliciting specific cellular responses and in guaranteeing long term success of implants. To this regard the layer by layer (LBL) self assembly technique is an efficient method to develop nanostructured thin films. This technique was used to assemble biomimetic coatings containing fibronectin, an adhesive glycoprotein of the extracellular matrix (ECM). The deposited films were then tested for the response of a line of human osteoblast-like cells in order to evaluate their potential for bone tissue repair purposes. The assembled films resulted to be effective in improving cell adhesion and proliferation. Therefore, this technique shows a high potential for the optimization of the surface properties of biomaterials.

Published in:

Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on

Date of Conference:

2-5 Aug. 2007