By Topic

Flexible strain sensors based on pentacene-carbon nanotube composite thin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Soyoun Jung ; Organic Electronics and Devices Laboratory, Electrical Engineering Department, University of Arkansas, USA ; Taeksoo Ji ; Jining Xie ; Vijay K. Varadan

In this study, we present the first flexible strain sensors based on pentacene-carbon nanotubes (CNTs) composite thin Alms employing a Wheatstone bridge configuration. The sensors were characterized with bending at 0, 45, and 90 degrees with respect to the bridge bias direction, applying strains of 1, 1.25, 1.67, and 2.5 0/00, respectively. It was noted that the output signal of the sensors is substantially enhanced with the addition of CNTs, resulting from the improvement in conductivity of the sensing active layer. This strain sensor using the CNTs-organic semiconductor matrix composite thin films as the active layer fabricated on flexible substrates is expected to possess better reliability as compared with conventional metallic foils and inorganic semiconductor strain sensors because of their low Young's modulus (~5 GPa).

Published in:

2007 7th IEEE Conference on Nanotechnology (IEEE NANO)

Date of Conference:

2-5 Aug. 2007