By Topic

A high-speed thin-film transistor printed on flexible substrate using an electronic-grade carbon nanotube aqeous solution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Han, Xuliang ; Brewer Sci., Inc., Rolla, MO ; Janzen, D.C. ; Vaillancourt, Jarrod ; Lu, X.

This paper describes a high-speed thin-film transistor (TFT) printed on a regular transparency film. The carrier transport layer of this TFT is a high-density ultrapure carbon nanotube (CNT) thin film formed at room temperature by dispensing a tiny droplet of an electronic-grade CNT aqueous solution that does not contain any surfactant. This CNT-TFT exhibited a high modulation speed of 312 MHz. The unique printing compatible process demonstrated herein would enable mass production of large-area electronic circuits on virtually any desired flexible substrate at low cost and high throughput.

Published in:

Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on

Date of Conference:

2-5 Aug. 2007