By Topic

Quantum well nanomechanical actuators with atomic vertical resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jan D. Makowski ; Department of Electrical and Computer Engineering, University of Minnesota, USA ; Joseph J. Talghader

A novel continuously tunable vertical actuator with sub-nanometer resolution is presented. It consists of a heterostructure cantilever which has collapsed over a 125 nm thick nanogap. Its operating principle relies on the temperature dependence of the adhesion energy between two InGaAs surface quantum well surfaces. Deflections from -17 nm to 5 nm with a precision better than three atomic layers have been measured.

Published in:

2007 7th IEEE Conference on Nanotechnology (IEEE NANO)

Date of Conference:

2-5 Aug. 2007