By Topic

FOOD Index: A Multidimensional Index Structure for Similarity-Based Fuzzy Object Oriented Database Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yazici, A. ; Dept. of Comput. Eng., Middle East Tech. Univ., Ankara ; Ince, C. ; Koyuncu, M.

A fuzzy object-oriented data model is a fuzzy logic-based extension to an object-oriented database model that permits uncertain data to be explicitly represented. The fuzzy object-oriented database (FOOD) model is one of the proposed models in the literature to handle uncertainty in object-oriented databases. Several kinds of fuzziness are dealt with in the FOOD model, including fuzziness at attribute level and between object and class and between class and superclass relations. The traditional index structures do not allow efficient access to both crisp and fuzzy objects for fuzzy object-oriented databases since they are not efficient enough in processing both crisp and fuzzy queries. In this study, we propose a new index structure, namely a FOOD index (FI), to deal with different kinds of fuzziness in fuzzy object-oriented databases and to support multidimensional indexing. In this paper, we describe this proposed index structure and show how it supports various types of flexible queries, and evaluate its performance for exact, range, and fuzzy queries.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:16 ,  Issue: 4 )