By Topic

Near lossless source coding with side information at the decoder: Beyond conditional entropy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
En-hui Yang ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON ; Da-ke He

In near lossless source coding with decoder only side information, i.e., Slepian-Wolf coding (with one encoder), a source X with finite alphabet X is first encoded, and then later decoded subject to a small error probability with the help of side information Y with finite alphabet Y available only to the decoder. The classical result by Slepian and Wolf shows that the minimum average compression rate achievable asymptotically subject to a small error probability constraint for a memoryless pair (X , Y) is given by the conditional entropy H(X|Y). In this paper, we look beyond conditional entropy and investigate the tradeoff between compression rate and decoding error spectrum in Slepian-Wolf coding when the decoding error probability goes to zero exponentially fast. It is shown that when the decoding error probability goes to zero at the speed of 2-deltan, where delta is a positive constant and n denotes the source sequences' length, the minimum average compression rate achievable asymptotically is strictly greater than H(X|Y) regardless of how small delta is. More specifically, the minimum average compression rate achievable asymptotically is lower bounded by a quantity called the intrinsic conditional entropy Hin(X|Y, delta), which is strictly greater than H(X|Y), and is also asymptotically achievable for small delta.

Published in:

Information Theory and Applications Workshop, 2008

Date of Conference:

Jan. 27 2008-Feb. 1 2008