Cart (Loading....) | Create Account
Close category search window
 

Novel Automatic Modulation Classification Using Cumulant Features for Communications via Multipath Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hsiao-Chun Wu ; Dept. of Electr. & Comput. Eng., Louisiana State Univ., Baton Rouge, LA ; Saquib, M. ; Zhifeng Yun

Nowadays, automatic modulation classification (AMC) plays an important role in both cooperative and non-cooperative communication applications. Very often, multipath fading channels result in the severe AMC performance degradation or induce large classification errors. The negative impacts of multipath fading channels on AMC have been discussed in the existing literature but no solution has ever been proposed so far to the best of our knowledge. In this paper, we propose a new robust AMC algorithm, which applies higher-order statistics (HOS) in a generic framework for blind channel estimation and pattern recognition. We also derive the Cramer-Rao lower bound for the fourth-order cumulant estimator when the AMC candidates are BPSK and QPSK over the additive white Gaussian noise channel, and it is a nearly minimum-variance estimator leading to robust AMC features in a wide variety of signal-to-noise ratios. The advantage of our new algorithm is that, by carefully designing the essential features needed for AMC, we do not really have to acquire the complete channel information and therefore it can be feasible without any a priori information in practice. The Monte Carlo simulation results show that our new AMC algorithm can achieve the much better classification accuracy than the existing AMC techniques.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 8 )

Date of Publication:

August 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.