By Topic

Complexities of Graph-Based Representations for Elementary Functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nagayama, S. ; Dept. of Comput. & Network Eng., Hiroshima City Univ., Hiroshima ; Sasao, T.

This paper analyzes complexities of decision diagrams for elementary functions such as polynomial, trigonometric, logarithmic, square root, and reciprocal functions. These real functions are converted into integer-valued functions by using fixed-point representation. This paper presents the numbers of nodes in decision diagrams representing the integer-valued functions. First, complexities of decision diagrams for polynomial functions are analyzed, since elementary functions can be approximated by polynomial functions. A theoretical analysis shows that binary moment diagrams (BMDs) have low complexity for polynomial functions. Second, this paper analyzes complexity of edge-valued binary decision diagrams (EVBDDs) for monotone functions, since many common elementary functions are monotone. It introduces a new class of integer functions, Mp-monotone increasing function, and derives an upper bound on the number of nodes in an EVBDD for the Mp-monotone increasing function. A theoretical analysis shows that EVBDDs have low complexity for Mp-monotone increasing functions. This paper also presents the exact number of nodes in the smallest EVBDD for the n-bit multiplier function, and a variable order for the smallest EVBDD.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 1 )