By Topic

Fault Attack on Elliptic Curve Montgomery Ladder Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fouque, P. ; Ecole normale Super., CNRS, Paris ; Lercier, R. ; Real, D. ; Valette, F.

In this paper, we present a new fault attack on elliptic curve scalar product algorithms. This attack is tailored to work on the classical Montgomery ladder method when the y-coordinate is not used. No weakness has been reported so far on such implementations, which are very efficient and were promoted by several authors. But taking into account the twist of the elliptic curves, we show how, with few faults (around one or two faults), we can retrieve the full secret exponent even if classical countermeasures are employed to prevent fault attacks. It turns out that this attack has not been anticipated as the security of the elliptic curve parameters in most standards can be strongly reduced. Especially, the attack is meaningful on some NIST or SECG parameters.

Published in:

Fault Diagnosis and Tolerance in Cryptography, 2008. FDTC '08. 5th Workshop on

Date of Conference:

10-10 Aug. 2008