By Topic

Analytical Evaluation of Via-Plate Capacitance for Multilayer Printed Circuit Boards and Packages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yaojiang Zhang ; Dept. of Electr. & Comput. Eng., Missouri Univ. of Sci. & Technol., Rolla, MO ; Jun Fan ; Selli, G. ; Cocchini, M.
more authors

The via-plate capacitance for a via transition to a multilayer printed circuit board is evaluated analytically in terms of higher order parallel-plate modes. The Green's function in a bounded coaxial cavity for a concentric magnetic ring current is first derived by introducing reflection coefficients for cylindrical waves at the inner and outer cavity walls. These walls can be perfect electric conductor (PEC)/perfect magnetic conductor(PMC) or a nonreflective perfectly matched layer. By further assuming a magnetic frill current on the via-hole in the metal plate, an analytical formula is derived for the via barrel-plate capacitance by summing the higher order modes in the bounded coaxial cavity. The convergence of the formula with the number of modes, as well as with the radius of the outer PEC/PMC wall is discussed. The analytical formula is validated by both quasi-static numerical methods and measurements. Furthermore, the formula allows the investigation of the frequency dependence of the via-plate capacitance, which is not possible with quasi-static methods.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 9 )