Cart (Loading....) | Create Account
Close category search window

An Analog RF MEMS Slotline True-Time-Delay Phase Shifter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Van Caekenberghe, K. ; Thales Air Syst., Hengelo ; Vaha-Heikkila, T.

An analog RF microelectromechanical systems (MEMS) slotline true-time-delay (TTD) phase shifter is presented for use in conjunction with tapered slot antennas, such as the Vivaldi aerial and the double exponentially tapered slot antenna. The design is a scalable distributed loaded-line cascade of 62 novel differential slow-wave unit cells. Each differential slow-wave unit cell comprises an electrically short slotline section, which is loaded with a shunt impedance consisting of two center-pulled contactless fixed-fixed beam RF MEMS varactors in series, sharing a common electrode. The analog RF MEMS slotline TTD phase shifter is demonstrated on a borosilicate glass wafer using a microfabrication process requiring six masks. It is designed for transistor-transistor logic bias voltage levels and exhibits a measured phase shift of 28.2deg/dB (7.8 ps/dB) and 59.2deg/cm at 10 GHz, maintaining a 75-Omega differential impedance match (S11dd < -15.8 dB). The input third-order intercept point is 5 dBm at 10 GHz for a Deltaf of 50 kHz, measured in a 100-Omega differential transmission line system. Design and fabrication opportunities, concerning distortion and loss reduction, as well as packaging, are highlighted.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 9 )

Date of Publication:

September 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.