By Topic

Receptive Field Characteristics Under Electrotactile Stimulation of the Fingertip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Skin on human fingertips has high concentrations of mechanoreceptors, which are used to provide fine resolution tactile representations of our environment. Here, we explore the ability to discriminate electrotactile stimulation at four sites on the fingertip. Electrical stimulation was delivered to arrays of electrodes centered on the index fingertip (volar aspect). Accuracy of discrimination was tested by examining electrode size, interelectrode spacing, and stimulation frequency as primary factors. Electrical stimulation was delivered at 2 mA with the pulse width modulated to be at (or above) perceptual threshold at 25 and 75 Hz and an average pulse width of 1.03 ms ( $+/-$0.70 ms standard deviation). Discrimination of the stimulated locations under this stimulation paradigm was significantly above chance level in all cases. Subjects' ability to discriminate stimulus location was not significantly influenced by electrode size or stimulation frequency when considered as separate factors. However, increased electrode spacing significantly increased subjects' ability to discriminate the location of the stimulated electrode. Further analysis revealed that errors were only significantly reduced along the medial-lateral direction with increasing interelectrode spacing. These results suggest that the electrotactile stimulus localization on the fingertip has some directional dependency, in addition to its dependency on interelectrode spacing. The neural mechanisms underlying this phenomenon are discussed in relation to electrical stimulus transduction characteristics of tactile mechanoreceptors.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 4 )