By Topic

Power-Efficient Resource Allocation and Quantization for TDMA Using Adaptive Transmission and Limited-Rate Feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xin Wang ; Dept. of Electr. Eng., Florida Atlantic Univ., Boca Raton, FL ; Marques, A.G. ; Giannakis, G.B.

Power-efficient scheduling and resource allocation are critical tasks for wireless sensor networks as well as commercial and tactical radios relying on IEEE access standards for power-limited communications. Tailored for such applications, this paper formulates and solves analytically novel convex optimization problems offering globally optimal user scheduling, as well as rate and power allocation for time-division multiple access (TDMA) in time-division-duplex or frequency-division-duplex operation. Through a limited-rate feedback link the access point provides quantized channel state information to the transmitters (Q-CSIT) based on which users adapt their modulation and code choices to the intended fading channel. When the quantizer needed to form the Q-CSIT is not prescribed, a joint allocation-quantization scheme is devised to minimize average transmit power subject to average rate and bit error rate constraints. The novel design couples adaptive transmission modes with quantization regions which are constructed to attain at least a local minimum of the average transmit power. Fairness in resource allocation is guaranteed by design. Transmit power and quantization region books are efficiently obtained offline while the online Q-CSIT based operation turns out to entail only a few feedback bits. Analysis and simulations include a perfect CSIT benchmark and reveal substantial power savings (as high as 15 dB) with low-overhead feedback.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 9 )