By Topic

Kalman Estimation of Single-Tone Parameters and Performance Comparison With MAP Estimator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hua Fu ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Pooi Yuen Kam

By incorporating a priori knowledge via the a priori probability density function of the frequency and phase, the Kalman estimator for linear, minimum mean-square error estimation of these single-tone parameters in additive, white, Gaussian noise is presented. First, a linear, two-dimensional state-space model for the frequency and phase of a sinusoid is formulated. Then, two Kalman filters are proposed, one based on Tretter's phase noise model [S. A. Tretter, ldquoEstimating the Frequency of a Noisy Sinusoid by Linear Regression,rdquo IEEE Transactions on Information Theory, vol. IT-31, no. 6, pp. 832-835, Nov. 1985], and the other based on our newly proposed model in [H. Fu and P. Y. Kam, ldquoMAP/ML Estimation of the Frequency and Phase of a Single Sinusoid in Noise,rdquo IEEE Transactions on Signal Processing, vol. 55, no. 3, Mar. 2007]. Finally, their mean-square error performances are compared with each other and with that of the maximum a posteriori probability (MAP) estimator, using computer simulations. The results show that the MAP estimator performs best and the Kalman filter based on the improved phase noise model has better performance than that based on Tretter's model, especially at low signal-to-noise ratio.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 9 )