By Topic

Discharge Characteristics of AC Plasma Display Panel Prepared Using Vacuum Sealing Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Choon-Sang Park ; Sch. of Electr. Eng. & Comput. Sci., Kyungpook Nat. Univ., Daegu ; Heung-Sik Tae ; Young-Kuk Kwon ; Eun Gi Heo

The base vacuum level achieved before loading the discharge gas is known to be an important parameter that affects both the address and sustain discharge characteristics in an AC plasma display panel (PDP), as a higher base vacuum level improves the discharge characteristics. Accordingly, the vacuum sealing method, which can enhance the base vacuum level, is adopted to enhance the MgO characteristics by reducing any residual gas impurity. The resulting changes in the address and sustain discharge characteristics, including the secondary electron coefficient, firing voltage, and dynamic voltage margin, are then compared with the results when using conventional atmospheric-pressure sealing for a 42-in ac PDP with a high Xe (11%) content. The vacuum sealing method was found to improve the secondary electron emission coefficient, lower the firing voltage, particularly under MgO cathode conditions, and increase the dynamic voltage margin. However, the vacuum sealing was also found to deteriorate the visible transmittance of the dielectric layer in the front panel. Nonetheless, the vacuum sealing process enabled the use of a higher Xe content, which is up to 17%, under a stable dynamic margin voltage, thereby improving both the luminance and luminous efficiencies of the AC PDP.

Published in:

IEEE Transactions on Plasma Science  (Volume:36 ,  Issue: 4 )