By Topic

Generation of MeV-Range Protons From 30–100 nm Solid Targets by Ultra-High-Contrast Laser Pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Antici, P. ; Ecole Polytech., Lab. pour I''Utilisation des Lasers Intenses, Univ. Paris VI, Palaiseau, France ; Fuchs, Julien ; d'Humieres, E. ; Lefebvre, E.
more authors

We have compared the acceleration of high-energy ions from the rear surface of thin foils for various prepulse contrast conditions of the ultraintense laser pulse irradiating the targets. The experiments were performed using the Laboratoire pour I'Utilisation des Lasers Intenses 100-TW laser facility with 15-20 J energy pulses of >1018 W/cm2 intensity irradiating aluminum targets of variable thicknesses. The laser pulse contrast ratio ahead of the main pulse (prepulse) was varied using either a fast Pockels cell or a single or double plasma mirror (PM). The latter was installed at an intermediate field position, in between the focusing optics and the target. This way, the effect of reducing the laser prepulse by the PM was optimized. With both methods improving the laser pulse contrast, we have observed that one can significantly reduce the thickness of the target used for proton acceleration and, at the same time, increase 1) the maximum energy of the accelerated protons and 2) the energy conversion efficiency of the process. This offers interesting perspectives from high-energy (5-10 MeV) ion acceleration using sub-petawatt laser facilities. A full characterization of contrast enhancement due to the PM, as well as a detailed analysis of the accelerated proton beams, is presented.

Published in:

Plasma Science, IEEE Transactions on  (Volume:36 ,  Issue: 4 )