By Topic

Images From the Development of a High-Power Microwave System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Holt, T.A. ; Dept. of Electr. & Comput. Eng., Texas Tech Univ., Lubbock, TX ; Young, A.J. ; Elsayed, M.A. ; Walter, J.W.
more authors

A recently developed self-contained compact single-shot high-power microwave (HPM) system was tested and characterized. The explosive-driven system utilizes a reflex triode virtual cathode oscillator (vircator) as the HPM source. An open-shutter image acquired with a digital single-lens reflex camera during operation was used to show plasma development extending beyond the anode-cathode gap of the vircator. The plasma's self-emission is due to ionized material eroded and desorbed from both the cathode and the anode.

Published in:

Plasma Science, IEEE Transactions on  (Volume:36 ,  Issue: 4 )