Cart (Loading....) | Create Account
Close category search window
 

Medical Image Noise Reduction Using the Sylvester–Lyapunov Equation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sanches, J.M. ; Inst. de Sist. e Robot., Inst. Super. Tecnico, Lisbon ; Nascimento, J.C. ; Marques, J.S.

Multiplicative noise is often present in medical and biological imaging, such as magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence microscopy. Noise reduction in medical images is a difficult task in which linear filtering algorithms usually fail. Bayesian algorithms have been used with success but they are time consuming and computationally demanding. In addition, the increasing importance of the 3-D and 4-D medical image analysis in medical diagnosis procedures increases the amount of data that must be efficiently processed. This paper presents a Bayesian denoising algorithm which copes with additive white Gaussian and multiplicative noise described by Poisson and Rayleigh distributions. The algorithm is based on the maximum a posteriori (MAP) criterion, and edge preserving priors which avoid the distortion of relevant anatomical details. The main contribution of the paper is the unification of a set of Bayesian denoising algorithms for additive and multiplicative noise using a well-known mathematical framework, the Sylvester-Lyapunov equation, developed in the context of the control theory.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 9 )

Date of Publication:

Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.