By Topic

Image Denoising Using Derotated Complex Wavelet Coefficients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mark Miller ; Signal Process. & Commun. Group, Univ. of Cambridge, Cambridge ; Nick Kingsbury

A method for removing additive Gaussian noise from digital images is described. It is based on statistical modeling of the coefficients of a redundant, oriented, complex multiscale transform. Two types of modeling are used to model the wavelet coefficients. Both are based on Gaussian scale mixture (GSM) modeling of neighborhoods of coefficients at adjacent locations and scales. Modeling of edge and ridge discontinuities is performed using wavelet coefficients derotated by twice the phase of the coefficient at the same location and the next coarser scale. Other areas are modeled using standard wavelet coefficients. An adaptive Bayesian model selection framework is used to determine the modeling applied to each neighborhood. The proposed algorithm succeeds in providing improved denoising performance at structural image features, reducing ringing artifacts and enhancing sharpness, while avoiding degradation in other areas. The method outperforms previously published methods visually and in standard tests.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 9 )