Cart (Loading....) | Create Account
Close category search window
 

Assessment of Texture Stationarity Using the Asymptotic Behavior of the Empirical Mean and Variance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Blanc, R. ; Comput. Vision Lab., ETH-Zentrum, Zurich ; Da Costa, Jean-Pierre ; Stitou, Y. ; Baylou, P.
more authors

Given textured images considered as realizations of 2-D stochastic processes, a framework is proposed to evaluate the stationarity of their mean and variance. Existing strategies focus on the asymptotic behavior of the empirical mean and variance (respectively EM and EV), known for some types of nondeterministic processes. In this paper, the theoretical asymptotic behaviors of the EM and EV are studied for large classes of second-order stationary ergodic processes, in the sense of the Wold decomposition scheme, including harmonic and evanescent processes. Minimal rates of convergence for the EM and the EV are derived for these processes; they are used as criteria for assessing the stationarity of textures. The experimental estimation of the rate of convergence is achieved using a nonparametric block sub-sampling method. Our framework is evaluated on synthetic processes with stationary or nonstationary mean and variance and on real textures. It is shown that anomalies in the asymptotic behavior of the empirical estimators allow detecting nonstationarities of the mean and variance of the processes in an objective way.

Published in:

Image Processing, IEEE Transactions on  (Volume:17 ,  Issue: 9 )

Date of Publication:

Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.