By Topic

Distributed Detection of Information Flows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ting He ; IBM T. J. Watson Res. Center, Hawthorne, NY ; Lang Tong

Distributed detection of information flows is considered in which traffic sensors at different locations of a network observe transmission epochs. The traffic sensors communicate their measurements to a fusion center via channels with rate constraints, and the fusion center performs hypothesis testing for information flow detection. Under a nonparametric flow model where relayed packets can be perturbed up to bounded delays and multiplexed with chaff noise, flow detectability is characterized through a notion called consistency-rate function that shows the level of detectable flows under capacity constraints on the fusion channels. Achievability results are presented by constructing detection systems consisting of quantization, data transmission, and detection subsystems. In particular, slot-by-slot quantization schemes at the local sensors and threshold detection schemes at the fusion center are proposed to provide consistent detection with quantifiable performance.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:3 ,  Issue: 3 )