By Topic

Bayesian Optimization Algorithm for learning structure of dynamic bayesian networks from incomplete data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wenqiang Guo ; Sch. of Electron. & Inf., Northwestern Polytech. Univ., Xi''an ; Xiaoguang Gao ; Qinkun Xiao

An algorithm based on Bayesian optimization algorithm (BOA), BOA-DBN, is proposed to learn the structure of DBN from incomplete databases. The algorithm takes fitness function based on expectation, which can convert incomplete data into complete data utilizing current best learned dynamic Bayesian network in evolutionary process. BOA generates a population of strings for the next generation, which tends to develop according to the optimization direction under the fitness function. Thus DBNs can be learned by using two Bayesian networks, prior network and transition network, to reduce the computational complexity. Encoding is presented, and genetic operators which provides guarantee of convergence are designed. Experimental results show that, given a missing data set, this algorithm can learn a DBN very close to the generative model and at the same time, enjoy the tend to converge at global optima due to BOA.

Published in:

Control and Decision Conference, 2008. CCDC 2008. Chinese

Date of Conference:

2-4 July 2008