By Topic

MC2: Multiple Clients on a Multilevel Cache

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yadgar, G. ; Comput. Sci. Dept., Technion Israel Inst. of Technol., Haifa ; Factor, M. ; Li, K. ; Schuster, A.

In today's networked storage environment, it is common to have a hierarchy of caches where the lower levels of the hierarchy are accessed by multiple clients. This sharing can have both positive or negative effects. While data fetched by one client can be used by another client without incurring additional delays, clients competing for cache buffers can evict each other's blocks and interfere with exclusive caching schemes. Our algorithm, MC2, combines local, per client management with a global, system-wide, scheme, to emphasize the positive effects of sharing and reduce the negative ones. The local scheme uses readily available information about the client's future access profile to save the most valuable blocks, and to choose the best replacement policy for them. The global scheme uses the same information to divide the shared cache space between clients, and to manage this space. Exclusive caching is maintained for non-shared data and is disabled when sharing is identified. Our simulation results show that the combined algorithm significantly reduces the overall I/O response times of the system.

Published in:

Distributed Computing Systems, 2008. ICDCS '08. The 28th International Conference on

Date of Conference:

17-20 June 2008