By Topic

Identifying Frequent Items in P2P Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mei Li ; Microsoft Corp., Redmond, WA ; Wang-Chien Lee

As peer-to-peer (P2P) systems receive growing acceptance, the need of identifying 'frequent items' in such systems appears in a variety of applications. In this paper, we define the problem of identifying frequent items (IFI) and propose an efficient in-network processing technique, called in-network filtering (netFilter), to address this important fundamental problem. netFilter operates in two phases: 1) candidate filtering: data items are grouped into item groups to obtain aggregates for pruning of infrequent items; and 2) candidate verification: the aggregates for the remaining candidate items are obtained to filter out false frequent items. We address various issues faced in realizing netFilter, including aggregate computation, candidate set optimization, and candidate set materialization. In addition, we analyze the performance of netFilter, derive the optimal setting analytically, and discuss how to achieve the optimal setting in practice. Finally, we validate the effectiveness of netFilter through extensive simulation.

Published in:

Distributed Computing Systems, 2008. ICDCS '08. The 28th International Conference on

Date of Conference:

17-20 June 2008