By Topic

Comparing Symmetric-key and Public-key Based Security Schemes in Sensor Networks: A Case Study of User Access Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haodong Wang ; Coll. of William & Mary, Williamsburg, VA ; Bo Sheng ; Tan, C.C. ; Qun Li

While symmetric-key schemes are efficient in processing time for sensor networks, they generally require complicated key management, which may introduce large memory and communication overhead. On the contrary, public-key based schemes have simple and clean key management, but cost more computational time. The recent progress of elliptic curve cryptography (ECC) implementation on sensors motivates us to design a public-key scheme and compare its performance with the symmetric-key counterparts. This paper builds the user access control on commercial off-the-shelf sensor devices as a case study to show that the public-key scheme can be more advantageous in terms of the memory usage, message complexity, and security resilience. Meanwhile, our work also provides insights in integrating and designing public-key based security protocols for sensor networks.

Published in:

Distributed Computing Systems, 2008. ICDCS '08. The 28th International Conference on

Date of Conference:

17-20 June 2008