Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

HLAC Approach to Automatic Object Counting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kobayashi, T. ; Nat. Inst. of Adv. Ind. Sci. & Technol., Tsukuba ; Hosaka, T. ; Mimura, S. ; Hayashi, T.
more authors

Counting (identical) objects in images is a simple yet fundamental recognition task that requires exhaustive human effort. Automation of this task would reduce the human load significantly. In this paper, we propose a statistical method to automatically count objects in an image sequence by using higher-order local auto-correlation (HLAC) based image features and multiple regression analysis (MRA). This method is based on a simple computation, which enables fast and automatic object counting in real time. We propose several methods that have different preprocessing and image features and conduct comparative experiments of counting objects (ducks in this paper) in images captured by outdoor monitoring cameras. The experimental results demonstrated the effectiveness of the proposed methods.

Published in:

Bio-inspired Learning and Intelligent Systems for Security, 2008. BLISS '08. ECSIS Symposium on

Date of Conference:

4-6 Aug. 2008