By Topic

Optimal Energy Scheduling for Rate-Guaranteed Download Over Faded Multichannel Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Baccarelli, Enzo ; Infocom Dept., Sapienza Univ. of Rome, Rome ; Biagi, Mauro ; Cordeschi, Nicola ; Pelizzoni, Cristian

In this contribution, we consider emerging wireless content delivery networks (CDNs), where multiple (possibly nomadic) clients download large-size files from battery-powered proxy servers via faded links that are composed of multiple slotted orthogonal bearers (e.g., logical subchannels). Since the considered transmit proxy servers are battery-powered mobile routers, a still open basic question deals with searching for optimal energy-allocation (e.g., energy scheduling) policies that efficiently split the available energy over the (faded) bearers. The target is to minimize the resulting (average) download time when constraints on the average available energy per information unit (IU), peak-energy per slot, and minimum energy per bearer (e.g., rate-induced constraints) are simultaneously active. The performance and the robustness of the resulting optimal energy scheduler are tested on the last hop of Rayleigh-faded mesh networks that adopt the so-called ldquodirty paper strategyrdquo for broadcasting multiple traffic flows that are generated by proxy servers equipped with multiple antennas .

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 4 )