By Topic

A New Impact-Ionization Current Model Applicable to Both Bulk and SOI MOSFETs by Considering Self-Lattice-Heating

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chengqing Wei ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore ; Guan Huei See ; Xing Zhou ; Lap Chan

In existing impact-ionization current (Jsub) models for short-channel MOSFETs, various models for the characteristic ionization length (I) or the velocity-saturation region length (lsat) have been developed by using the polynomial-fitting method in order to model the bias dependence of the maximum electric field (Em) in the channel. This paper proposes a bias-voltage- and gate-length-dependent effective maximum electric field (Em,eff) based on energy-balance equation, aimed at obtaining an accurate expression of Em to increase the accuracy of the Isub model for deep submicrometer devices. This new method overcomes the complicated modeling of I, avoids the extraction of different fitting constants for different devices, and enables unique extraction of the impact-ionization coefficients (A and B) for different devices. This improved model demonstrates excellent agreements with the numerical data of nMOSFETs from a 90-nm-technology wafer file. Only one unique set of parameters is needed to fit the data from devices with different biases and lengths for the same technology node. Moreover, since the lattice temperature (Tl) is built in the formulation of Em,eff, a compact Isub model with self-lattice-heating is developed, which also accounts for the excess substrate current observed in the SOI devices due to carrier heating in the channel.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 9 )