By Topic

Automatic color segmentation of images with application to detection of variegated coloring in skin tumors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Umbaugh, S.E. ; Dept. of Electr. Eng., Missouri Univ., Rolla, MO, USA ; Moss, R.H. ; Stoecker, W.V.

A description is given of a computer vision system, developed to serve as the front-end of a medical expert system, that automates visual feature identification for skin tumor evaluation. The general approach is to create different software modules that detect the presence or absence of critical features. Image analysis with artificial intelligence (AI) techniques, such as the use of heuristics incorporated into image processing algorithms, is the primary approach. On a broad scale, this research addressed the problem of segmentation of a digital image based on color information. The algorithm that was developed to segment the image strictly on the basis of color information was shown to be a useful aid in the identification of tumor border, ulcer, and other features of interest. As a specific application example, the method was applied to 200 digitized skin tumor images to identify the feature called variegated coloring. Extensive background information is provided, and the development of the algorithm is described.<>

Published in:

Engineering in Medicine and Biology Magazine, IEEE  (Volume:8 ,  Issue: 4 )