By Topic

Coding strategies for noise-free relay cascades with half-duplex constraint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lutz, T. ; Inst. for Commun. Eng., Tech. Univ. Munchen, Munich ; Hausl, C. ; Kotter, R.

Two types of noise-free relay cascades are investigated. Networks where a source communicates with a distant receiver via a cascade of half-duplex constrained relays, and networks where not only the source but also a single relay node intends to transmit information to the same destination. We introduce two relay channel models, capturing the half-duplex constraint, and within the framework of these models capacity is determined for the first network type. It turns out that capacity is significantly higher than the rates which are achievable with a straightforward time-sharing approach. A capacity achieving coding strategy is presented based on allocating the transmit and receive time slots of a node in dependence of the node's previously received data. For the networks of the second type, an upper bound to the rate region is derived from the cut-set bound. Further, achievability of the cut-set bound in the single relay case is shown given that the source rate exceeds a certain minimum value.

Published in:

Information Theory, 2008. ISIT 2008. IEEE International Symposium on

Date of Conference:

6-11 July 2008