By Topic

Distributed STBC for single carrier relay-assisted transmissions over frequency-selective channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ganesan, S. ; ECIT, Queen''s Univ. Belfast, Belfast ; Zhiguo Ding ; Ratnarajah, T. ; Sellathurai, M.

In this paper, we design and analyse a distributed time-reversal space-time block code (D-TR-STBC) that can achieve significant power gain and optimum diversity order in a relay-assisted transmission for single-carrier frequency-selective channels. The idea behind distributed space-time block coding (D-STBC) is to have the relays cooperate in such a way that the signal at the destination is a space-time code, so as to obtain full diversity. In contrast to the literature, we show that the orthogonality of D-TR-STBC can be preserved at the destination by including the signals received via the direct link (from the source to the destination) at the first half of the signalling interval along with the space-time block coded signal received at the second half of the signalling interval. The pairwise error probability (PEP) derivation shows that the proposed scheme achieves the optimum diversity order. Moreover, the symbol error rate (SER) performance of the proposed scheme and competing scheme using different equalization techniques and signal to noise ratios (SNRs) in the source to relay link shows that the proposed protocol outperforms the other by an SNR margin of 2-5 dB.

Published in:

Information Theory, 2008. ISIT 2008. IEEE International Symposium on

Date of Conference:

6-11 July 2008