By Topic

Delay-constrained high throughput protocol for multi-path transmission over wireless multimedia sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shuang Li ; Department of Computer Science and Software Engineering, Auburn University, USA ; Raghu Neelisetti ; Cong Liu ; Alvin Lim

Real-time multimedia transport has stringent QoS requirements, such as bandwidth, delay, jitter, and loss ratio. Wireless sensor networks are useful for streaming multimedia data in infrastructure-free and hazardous environments. However, these networks are composed of nodes with constrained bandwidth and energy. In QoS routing for wired networks, multipath routing is widely used. Some existing ad hoc routing algorithms also provide multipath routing. Directed diffusion has been commonly used for wireless sensor networks because of its energy efficiency and scalability. However, the basic protocol only routes packets through a single path, which barely meets the throughput requirement of multimedia data. Instead, we propose a multipath algorithm based on directed diffusion that reinforces multiple routes with high link quality and low latency. We use the NS-2 simulation tool with video trace generated by multiple description coding (MDC) to evaluate the performance. The results show that our algorithm gives better throughput and delay performance than standard directed diffusion.

Published in:

World of Wireless, Mobile and Multimedia Networks, 2008. WoWMoM 2008. 2008 International Symposium on a

Date of Conference:

23-26 June 2008