By Topic

Parameter estimation in naphtha pyrolysis based on chaos quantum particle swarm optimization algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Honggang Wang ; State-Key Lab. of Chem. Eng., East China Univ. of Sci. & Technol., Shanghai ; Jingxin Feng ; Feng Qian

Parameter estimation is the key step to improve the precision of a mechanistic model, which is fundamental for simulation, control and optimization of industrial processes. A novel method based on nonlinear optimization has been developed to estimate the initial selectivities of the first-order primary reaction for the naphtha decomposition. The proposed approach is to minimize the discrepancy between the model simulated outputs and the industrial measured values, based on the naphtha feed characteristics and operating condition. The chaos quantum particle swarm optimization (CQPSO) algorithm is proposed and employed since the problem is strongly nonlinear and high dimensional. By introducing the chaos-mutation operator with quantum-states-updating strategy, a good balance between exploration and exploitation is maintained throughout the entire searching, which is demonstrated by numerical experiment. The proposed algorithm is proved to be effective by estimating 10 parameters in the reaction model for naphtha pyrolysis.

Published in:

Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on

Date of Conference:

25-27 June 2008