By Topic

Optimal intermediate bus capacitance for system stability on distributed power architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Abe, S. ; Kyushu Univ., Fukuoka ; Hirokawa, M. ; Shoyama, M. ; Ninomiya, T.

The power supply system which requires the low-voltage / high-current output has been changing from conventional centralized power system to distributed power system. The distributed power system consists of bus converter and POL. The most important factor is the system stability in bus architecture design. The overlap between the output impedance of bus converter and input impedance of POL causes system instability, and it has been an actual problem. Increasing the bus capacitor, system stability can be reduced easily. However, due to the limited space on the system board, increasing of bus capacitors is impractical. The urgent solution of the issue is desired strongly. This paper presents the output impedance design for on-board distributed power system by means of full- regulated bus converter. The output impedance peak of the bus converter and the input impedance of the POL are analyzed, and it is conformed by experimentally for stability criterion. Furthermore, the optimal intermediate bus capacitance design for system stability is proposed.

Published in:

Power Electronics Specialists Conference, 2008. PESC 2008. IEEE

Date of Conference:

15-19 June 2008