Cart (Loading....) | Create Account
Close category search window
 

Modeling of Combined Temperature Cycling and Vibration Loading on PBGA Solder Joints Using an Incremental Damage Superposition Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haiyu Qi ; Reliability Eng. Dept., Dell Inc., Round Rock, TX ; Osterman, M. ; Pecht, M.

Concurrent vibration and temperature cycle environments are commonly encountered in the service life of many electronic products, particularly those used in automotive, avionic, and military applications. However, the ability to predict life expectancy under these types of environments remains a technical challenge. In this paper, a traditional linear damage superposition modeling approach and a damage superposition approach that considers the temperature imposed load state on vibration damage are compared with experimental test results for plastic ball grid array (PBGA) assemblies subjected to temperature cycling, vibration loading, and combined temperature cycling and vibration loading conditions. The results showed much earlier PBGA solder-joint failure under combined loading than with either separate temperature cycling or room temperature vibration loading. Traditional linear superposition was found to over-predict the solder-joint fatigue life, since it neglects the interaction effects of two different loadings. The damage superposition approach that considers the temperature imposed load state on vibration damage is found to be more representative of test data.

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:31 ,  Issue: 3 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.