Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A Model-Based Consecutive Scanline Tracking Method for Extracting Vascular Networks From 2-D Digital Subtraction Angiograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ping Zou ; Dept. of Electron. & Electr. Eng., Univ. of Sheffield, Sheffield ; Chan, P. ; Rockett, P.

We propose a new model-based algorithm for the automated tracking of vascular networks in 2-D digital subtraction angiograms. Consecutive scanline profiles are fitted by a parametric imaging model to estimate local vessel center point, radius, edge locations and direction. An adaptive tracking strategy is applied with appropriate termination criteria to track each vessel segment. When tracking stops, to prevent premature termination and to detect bifurcations, a look ahead detection scheme is used to search for possible continuation points of the same vessel segment or those of its bifurcated segments. The proposed algorithm can automatically extract the majority of the vascular network without human interaction other than initializing the start point and direction. Compared to other tracking methods, the proposed method highlights accurate estimation of local vessel geometry. Accurate geometric information and a hierarchical vessel network are obtained which can be used for further quantitative analysis of arterial networks to obtain flow conductance estimates.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 2 )