By Topic

Musical instrument identification using Principal Component Analysis and Multi-Layered Perceptrons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Loughran, Roisin ; Univ. of Limerick, Limerick ; Walker, J. ; O'Neill, M. ; O'Farrell, M.

This study aims to create an automatic musical instrument classifier by extracting audio features from real sample sounds. These features are reduced using Principal Component Analysis and the resultant data is used to train a Multi-Layered Perceptron. We found that the RMS temporal envelope and the evolution of the centroid gave the most interesting results of the features studied. These results were found to be competitive whether the scope of the data was across one octave or across the range of each instrument.

Published in:

Audio, Language and Image Processing, 2008. ICALIP 2008. International Conference on

Date of Conference:

7-9 July 2008