By Topic

Bayesian Network Models for Web Effort Prediction: A Comparative Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Emilia Mendes ; The University of Auckland, Auckland ; Nile Mosley

The objective of this paper is to compare, using a cross-company dataset, several Bayesian network (BN) models for Web effort estimation. Eight BNs were built; four automatically using Hugin and PowerSoft tools with two training sets, each with 130 Web projects from the Tukutuku database; four using a causal graph elicited by a domain expert, with parameters automatically fit using the same training sets used in the automated elicitation (hybrid models). Their accuracy was measured using two validation sets, each containing data on 65 projects, and point estimates. As a benchmark, the BN-based estimates were also compared to estimates obtained using manual stepwise regression (MSWR), case-based reasoning (CBR), mean- and median-based effort models. MSWR presented significantly better predictions than any of the BN models built herein, and in addition was the only technique to provide significantly superior predictions to a median-based effort model. This paper investigated data-driven and hybrid BN models using project data from the Tukutuku database. Our results suggest that the use of simpler models, such as the median effort, can outperform more complex models, such as BNs. In addition, MSWR seemed to be the only effective technique for Web effort estimation.

Published in:

IEEE Transactions on Software Engineering  (Volume:34 ,  Issue: 6 )